Новости

Доза витамина С помогает расти золотым нанопроволокам

Повышение уровня витамина С помогло ученым Университета Райса превратить маленькие золотые наностержни в тонкие золотые нанопроволоки.

Обычная, мягкая аскорбиновая кислота — это не секретный соус, который помог рисовой лаборатории химика Евгения Зубарева вырастить чистые партии нанопроволок из пеньковых наностержней без недостатков предыдущих методов.

«Самого по себе новшества в использовании витамина С для создания наноструктур золота не существует, потому что есть много предыдущих примеров. Но медленное и контролируемое восстановление, достигаемое с помощью витамина С, неожиданно подходит для этого типа химии при производстве сверхдлинных нанопроводов».

 — сказал Зубарев.

Подробности работы опубликованы в журнале Американского химического общества ACS Nano («Химическая трансформация наностержней в нанопроволоки: обратимый рост и растворение анизотропных золотых наноструктур» ).

Золотые нанопроволоки

Золотые нанопроволоки, выращенные в лаборатории химика Райс-Университета Евгения Зубарева, обещают обеспечить настраиваемые плазмонные свойства для оптического и электронного применения. Провода можно контролируемо выращивать из наностержней или сокращать. (Изображение: Исследовательская группа Зубарева)

Наностержни лаборатории Райс имеют толщину около 25 нанометров в начале процесса — и остаются такими же, пока их длина увеличивается, превращаясь в длинные нанопроволоки. При длине свыше 1000 нанометров объекты считаются нанопроводами, и это имеет значение. Соотношение сторон проводов — длина по ширине — определяет, как они поглощают и испускают свет и как проводят электроны. В сочетании с металлическими свойствами, присущими золоту, это может повысить их ценность для сенсорных, диагностических, визуальных и терапевтических применений.

Зубарев и ведущий автор Бишну Ханал, выпускник факультета химии Университета Райса, сумели заставить свои частицы выйти далеко за рамки перехода от наностержня к нанопроводу, теоретически к неограниченной длине.

Исследователи также показали, что процесс полностью контролируемый и обратимый. Это позволяет получать нанопроволоки любой желаемой длины и, следовательно, желаемой конфигурации для электронных приложений или приложений, манипулирующих светом, особенно тех, которые включают плазмоны, вызванные светом колебания электронов на поверхности металла.

Плазмонный отклик нанопроволоки может быть настроен на излучение света от видимого к инфракрасному излучению и теоретически далеко за его пределами, в зависимости от их пропорций.
«Процесс медленный, поэтому для выращивания нанопроволоки длиной в микроны требуются часы. «В этой статье мы сообщили только о структурах длиной до 4–5 микрон. Но мы работаем над созданием гораздо более длинных нанопроводов».


— рассказывает Зубарев.
« Процесс роста, по-видимому, работает только с пентаэдрически двойниковыми золотыми наностержнями, которые содержат пять связанных кристаллов. Эти пятисторонние стержни — «Представьте карандаш, но с пятью сторонами вместо шести. У наконечников также пять граней, но они имеют различное расположение атомов. Энергия этих атомов немного ниже, и когда новые атомы осаждаются там, они не перемещаются куда-либо еще».

— сказал Зубарев.

Это удерживает растущие провода от обхвата. Каждый добавленный атом увеличивает длину провода и, следовательно, соотношение сторон.

Реактивные наконечники наностержней получают помощь от поверхностно-активного вещества CTAB, которое покрывает плоские поверхности наностержней. По словам ученого:

«Поверхностно-активное вещество образует очень плотный, плотный бислой по бокам, но оно не может эффективно покрывать кончики».

Это оставляет кончики открытыми для реакции окисления или восстановления. Аскорбиновая кислота обеспечивает электроны, которые соединяются с ионами золота и оседают на кончиках в форме атомов золота. И в отличие от углеродных нанотрубок в растворе, который легко агрегирует, нанопроволоки держатся на расстоянии друг от друга.

«Самая ценная особенность заключается в том, что это действительно одномерное удлинение наностержней до нанопроволоки. Это не меняет диаметр, поэтому, в принципе, мы можем взять маленькие стержни с соотношением сторон, может быть, два или три, и удлинить их в 100 раз».

— говорит Зубарев.

По его словам, этот процесс должен применяться к другим металлическим наностержням, включая серебро.

Источник: Университет Райс.

Перевод с сайта:www.nanowerk.com

Андрей Баженов

Недавние сообщения

Значение научно-технического фестиваля «Маёвский взлёт» для химической промышленности России

Фестиваль «Маёвский взлёт» давно стал важным событием в научно-технической жизни России, объединяя студентов, выпускников и…

1 день тому назад

Гидравлические напорные фильтры для горнодобывающей техники: инженерный щит против абразивного износа

Горнодобывающая отрасль — это царство экстремальных механических нагрузок, где техника должна демонстрировать не просто мощность,…

2 дня тому назад

Рефрактометры для электролита: назначение, виды и особенности, критерии выбора

В химической и нефтехимической промышленности точность измерений играет ключевую роль. Особенно это касается контроля состояния…

6 дней тому назад

Герметики для автомобиля: виды и назначение, изготовление, советы экспертов

В современном автомобиле огромное количество элементов, требующих надежной герметизации. От уплотнений дверей до крыши —…

6 дней тому назад

Знакомьтесь, колба магистрального фильтра: назначение, виды, особенности, критерии выбора

Современные системы водоочистки давно стали неотъемлемой частью жизни — как в промышленности, так и в…

1 неделя тому назад

Полимерные материалы: винипласт и стеклотекстолит в современной промышленности

Современная промышленность немыслима без полимерных материалов, среди которых особое место занимают винипласт и стеклотекстолит. Сегодня…

3 недели тому назад