Электрофильные реагенты являются наиболее характерными атакующими частицами в реакциях алкенов, идущих по С-Сπсвязи.
Многочисленные экспериментальные данные свидетельствуют о том, что в отличие от реакций гидрирования электрофильное присоединение осуществляется по асинхронному типу.
Рассмотрим типичную реакцию электрофильного присоединения к алкенам — реакцию бромирования этилена:
Поскольку изменение энтропии в этой реакции не очень значительно, очевидно, что бромирование этилена согласно эмпирическому правилу (см. раздел 9.5) принципиально возможно, а константа равновесия данной реакции заведомо больше единицы: К ≥1 .
Бромирование алкенов удается легко осуществить при комнатной температуре как в инертных, так и в полярных растворителях (например, в бензоле, ССl4, этиловом спирте) и в других условиях, исключающих участие в реакции свободных радикалов.
Механизм реакции электрофильного присоединения к алкенам, в частности бромирования, в настоящее время представляется следующим
Циклический «неклассический» карбокатион, например норборнильный, образуется в некоторых реакциях мостиковых бициклических углеводородов и их производных. В таких «неклассических» карбокатионах атом углерода становится пентакоординированным. По В. А. Бархату [104, с. 227-411], «неклассический ион есть положительно заряженная частица, обладающая минимумом свободной энергии при данных межъядерных расстояниях, в которой делокализация положительного заряда осуществляется с помощью многоцентровой молекулярной орбитали, образованной, по меньшей мере частично, σ-перекрыванием атомных орбиталей атомов, по крайней мере часть из которых не связана между собой σ-остовом». Примерами таких ионов являются:
Присоединение реагентов типа НХ к несимметричным алкенам идет по аналогичному бромированию механизму, но в данном случае возникает проблема направления присоединения.
В. В. Марковников в 1870 г. сформулировал правило, согласно которому кислоты присоединяются к несимметричным алкенам таким образом, что водород кислоты присоединяется к атому углерода, несущему наибольшее число атомов водороду. Это правило легко понять, если принять во внимание механизм реакции электрофильного присоединения, например:
Положительный конец диполя НВr ориентируется к атому углерода с наибольшей электронной плотностью, то есть к концевому. Из двух возможных карбокатионов А и Б первый, несомненно, более устойчив (стабилизация за счет положительных индуктивных эффектов трех метильных групп) и образуется быстрее. В результате при электрофильном присоединении в основном образуется mpem-бутилбромид. Следовательно, в современной трактовке правило Марковникова можно сформулировать следующим образом: присоединение НХ к алкену идет с образованием наиболее стабильного карбокатиона. Правило Марковникова в такой формулировке объясняет редкие случаи электрофильного присоединения к алкенам против классически сформулированного правила Марковникова. Например, в реакции присоединения НСl к алкену с сильной электроноакцепторной группой образуется более стабильный карбокатион А, а протон присоединяется к менее гидрогенизированному атому углерода:
Естественное предположение о возможности присоединения к алкенам самых разнообразных электрофильных реагентов находит экспериментальное подтверждение. Необходимо, однако, помнить, что поляризация С-Сπ связи происходит в момент химической реакции, то есть реагент должен быть достаточно сильным электрофилом. Слабые электрофилы или, тем более, нуклеофилы должны быть «электрофилизированы» добавлением сильного электрофила (кислоты).
Среди типичных реагентов отметим:
Расчеты тепловых эффектов реакций галогенирования алкенов дают следующие результаты:
Все реакции галогенирования принципиально возможны и практически осуществимы, за исключением фторирования. Эта реакция вследствие очень высокой экзотермичности не поддается контролю. Легкость осуществления реакций галогенирования, например бромирования, в обычных органических растворителях, таких, как хлороформ, четыреххлористый углерод, широко используют в аналитических целях для качественного определения наличия двойной связи в органических соединениях.
Механизм и особенности присоединения к алкенам рассмотрены выше. Отметим среди реакций этого типа взаимодействие с серной кислотой, которое лежит в основе важных технических процессов:
Реакция может идти дальше с образованием ди-(трет -бутил)сульфата.
Реакция гипохлорирования лежит в основе промышленного синтеза глицерина. Пропилен после пр вращения в хлористый аллил или аллиловый спирт подвергают действию хлорноватистой кислоты, которая взаимодействует по механизму электрофильного присоединения к алкенам.
Акцепторное влияние двух атомов хлора приводит к образованию обоих карбокатионов А и Б и, соответственно, смеси дихлорпропанолов. Собственно глицерин получают щелочным омылением дихлорпропанолов:
Вода является слабым электрофилом, и по этой причине ее прямое присоединение к алкенам осуществить не удается. Однако в присутствии сильных минеральных кислот в результате гидратации образуются спирты. Так получают синтетический этиловый спирт, техническую потребность в котором промышленность удовлетворяет гидратацией этилена, выделяемого из газов крекинга или продуктов пиролиза легких алканов (этана, пропана, бутана).
При сернокислотном методе пропусканием этилена через концентрированную серную кислоту получают этил сульфат (этил серную кислоту), который реагирует с водой, давая в итоге спирт и кислоту:
С фосфорной кислотой гидратация осуществляется под давлением. Спирт в данном случае образуется сразу при взаимодействии карбокатиона с водой.
Реакцию гидратации можно осуществить и в газовой фазе — при высоких температуре и давлении. В качестве катализаторов обычно применяют оксид алюминия (Аl2O3), хлористый цинк (ZnCl2) и др. Гомологи этилена образуют вторичные и третичные спирты.
Присоединение спиртов к алкенам в присутствии сильных кислот приводит к образованию простых эфиров:
Карбоновые кислоты образуют с алкенами сложные эфиры. Реакция ускоряется сильными минеральными кислотами:
Алкены с галогенангидридами и ангидридами карбоновых кислот в присутствии кислот Льюиса дают продукт присоединения, который в зависимости от условий реакции далее превращается в непредельный кетон, насыщенный кетон и др.:
Непредельный кетон может образоваться и в результате отщепления протона от карбокатиона [46, т. 3].
В качестве электрофильных реагентов наряду с обычными электрофилами могут быть использованы ионы переходных металлов, которые известны как хорошие комплексообразователи. Особо прочные π-комплексы образуют ионы Сu+, Ag+, Ru2+, Pd2+, Pt2+.
В промышленности алкены из крекинг-газов выделяют с помощью раствора CuCl в аммиаке, а лучше — этаноламине.
Сорбция осуществляется при повышенном давлении, десорбция — при пониженном.
Одной из важнейших в практическом плане реакций алкенов является алкилирование — введение алкильной группы, которое приводит к алканам и может быть осуществлено различными методами.
Синтез изоалканов — высокооктанового бензина — реализован в промышленности в нескольких модификациях.
Сернокислотное алкилирование осуществляют действием 60%-ной серной кислоты на низшие алкены, выделяемые из газов крекинга или пиролиза пропан-бутановой фракции.
Трет-Бутилкатион реагирует с алкеном смеси (на схеме представлен один из вариантов). Стабилизация карбокатиона А отщеплением протона (вода прерывает процесс полимеризации) приводит к смеси алкенов, гидрирование которой дает изооктан.
Процесс, разработанный В. Н. Ипатьевым, в котором взаимодействие изобутилен-изобутановой смеси осуществляется в присутствии «твердой фосфорной кислоты» (фосфорная кислота на оксиде алюминия) или фторида бора, является примером катионоцепной реакции (см. раздел 9.5.5). Крупнотоннажное производство по этой схеме успешно реализовано самим Ипатьевым в США в 30-е годы. Взаимодействие алкенов с аренами (ароматическими углеводородами) рассмотрено в главе XV.
Фторопласт — это уникальный полимер, известный своей высокой стойкостью к химическим воздействиям, термической стабильностью и…
Фасадная краска предназначена для защиты стен дома от негативного воздействия окружающей среды. В силу этого…
В современном мире, где наука и технологии не знают границ, качественный перевод технических текстов становится…
В условиях цифровизации перед предприятиями химической промышленности возникает задача обеспечить безопасную мобильную работу для своих…
В условиях стремительного развития химической и нефтехимической отрасли все важнее становятся технологические решения, поддерживающие обработку…
Учебные пособия по химии являются важнейшим ресурсом для студентов, исследователей и всех, кто стремится глубже…